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Abstract
We obtain a class of parametric oscillation modes that we call K-modes with
damping and absorption that are connected to the classical harmonic oscillator
modes through the ‘supersymmetric’ one-dimensional matrix procedure similar
to relationships of the same type between Dirac and Schrödinger equations in
particle physics. When a single coupling parameter, denoted by K, is used,
it characterizes both the damping and the dissipative features of these modes.
Generalizations to several K parameters are also possible and lead to analytical
results. If the problem is passed to the physical optics (and/or acoustics) context
by switching from the oscillator equation to the corresponding Helmholtz
equation, one may hope to detect the K-modes as waveguide modes of specially
designed waveguides and/or cavities.

PACS numbers: 12.60.Jv, 11.30.Pb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Factorizations of differential operators describing simple mechanical motion have been only
occasionally used in the past, although in quantum mechanics the procedure led to a vast
literature under the name of supersymmetric quantum mechanics initiated by a paper of Witten
[1]. However, as shown by Rosu and Reyes [2], for the damped Newtonian-free oscillator
the factorization method could generate interesting results even in an area settled more than
three centuries ago. In the following, we apply some of the supersymmetric schemes to the
basic classical harmonic oscillator. In particular, we show how a known connection in particle
physics between Dirac and Schrödinger equations could lead in the case of harmonic motion
to chirped (i.e., time-dependent) frequency oscillator equations whose solutions are a class
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of oscillatory modes depending on one more parameter, denoted by K in this work, besides
the natural circular frequency ω0. The parameter K characterizes both the damping and the
losses of these ‘supersymmetric’ partner modes. Moreover, we do not limit this study to one
K parameter, extending it to several such parameters still getting analytic results. Guided by
mathematical equivalence, possible applications in several areas of physics are identified.

2. Classical harmonic oscillator: the Riccati approach

The harmonic oscillator can be described by one of the simplest Riccati equation

u′ + u2 + κω2
0 = 0, κ = ±1, (1)

where the plus sign is for the normal case whereas the minus sign is for the upside down case.
Indeed, employing u = w′

w
one gets the harmonic oscillator differential equation

w′′ + κω2
0w = 0, (2)

with the solutions

wb =
{
W+ cos(ω0t + ϕ+) if κ = 1
W− sinh(ω0t + ϕ−) if κ = −1,

where W± and ϕ± are amplitude and phase parameters, respectively, which can be ignored in
the following.

The particular Riccati solutions of equation (1) are

up =
{−ω0 tan(ω0t) if κ = 1
ω0 coth(ω0t) if κ = −1.

It is well known that the particular Riccati solutions enter as the nonoperatorial part in the
common factorizations of the second-order linear differential equations that are directly related
to the Darboux isospectral transformations [3].

Thus, for equation (2) one gets
(
Dt = d

dt

)
(Dt + up)(Dt − up)w = w′′ +

(−u′
p − u2

p

)
w = 0. (3)

To fix the ideas, we shall use the terminology of Witten’s supersymmetric quantum mechanics
and call equation (3) the bosonic equation. We stress here that the supersymmetric terminology
is used in this paper only for convenience and should not be taken literally. Thus, the
supersymmetric partner (or fermionic) equation of equation (3) is obtained by reversing the
factorization brackets

(Dt − up)(Dt + up)wf = w′′ +
(
u′

p − u2
p

)
w = w′′ + ω2

f (t)w = 0, (4)

which is related to the fermionic Riccati equation

u′ − u2 − ω2
f (t) = 0, (5)

where the free term ω2
f is the following function of time:

ω2
f (t) = u′

p − u2
p =

{
ω2

0(−1 − 2 tan2 ω0t) if κ = 1

ω2
0(1 − 2 coth2ω0t) if κ = −1.

The solutions (fermionic zero modes) of equation (4) are given by

wf =
{ −ω0

cos(ω0t)
if κ = 1

ω0
sinh(ω0t)

if κ = −1,
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and thus present strong periodic singularities in the first case and just one singularity at the
origin in the second case. These ‘partner’ oscillators, as well as those to be discussed in
the following, are parametric oscillators, i.e., of time-dependent frequency. Moreover, their
frequencies can become infinite (periodically). In general, signals of this type are known
as chirps. ‘Infinite’ chirps could be produced, in principle, in very special astrophysical
circumstances, e.g., close to black hole horizons [4].

3. Matrix formulation

Using the Pauli matrices σy = ( 0
i

−i
0

)
and σx = ( 0

1
1
0

)
, we write the matrix equation

D̂0W ≡ [σyDt + σx(iup)]W = 0, (6)

where W = (
w1

w2

)
is a two-component spinor. Equation (6) is equivalent to the following

decoupled equations:

(iDt + iup)w1 = 0 (7)

(−iDt + iup)w2 = 0. (8)

Solving these equations one gets w1 ∝ ω0/ cos(ω0t) and w2 ∝ ω0 cos(ω0t) for the κ = 1 case
and w1 ∝ ω0/sinh(ω0t) and w2 ∝ ω0 sinh(ω0t) for the κ = −1 case. Thus, we obtain

W =
(

w1

w2

)
=

(
wf

wb

)
. (9)

This shows that the matrix equation is equivalent to the two second-order linear differential
equations of bosonic and fermionic type, equations (2) and (4), respectively, a result quite well
known in particle physics. Indeed, a comparison with the true Dirac equation with a Lorentz
scalar potential S(x)

[−iσyDx + σx(m + S(x))]W = EW (10)

shows that equation (6) corresponds to a Dirac spinor of ‘zero mass’ and ‘zero energy’ in an
imaginary scalar ‘potential’ iup(t). We recall that a detailed discussion of the Dirac equation in
the supersymmetric approach has been provided by Cooper et al [5] in 1988. They showed that
the Dirac equation with a Lorentz scalar potential is associated with a susy pair of Schrödinger
Hamiltonians. This result has been used later by many authors in the particle physics
context [6].

4. Extension through parameter K

We now come to the main issue of this work. Consider the slightly more general Dirac-like
equation

D̂KW ≡ [σyDt + σx(iup + K)]W = KW, (11)

where K is a (not necessarily positive) real constant. On the left-hand side of the equation,
K stands as an (imaginary) mass parameter of the Dirac spinor, whereas on the right-hand
side it corresponds to the energy parameter. Thus, we have an equation equivalent to a Dirac
equation for a spinor of mass −iK at the fixed energy E = −iK . This equation can be written
as the following system of coupled equations:

iDtw1 + (iup + K)w1 = Kw2 (12)

−iDtw2 + (iup + K)w2 = Kw1. (13)
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Figure 1. The real part of the bosonic mode w+
2 (y; 1

2 , 1
2 ) for t ∈ [0, 10] and K ∈ [0, 4].
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Figure 2. The imaginary part of the bosonic mode w+
2 (y; 1

2 , 1
2 ) for t ∈ [0, 10] and K ∈ [0, 4].

The decoupling can be achieved by applying the operator in equation (13) to equation (12).
For the fermionic spinor component one gets

D2
t w

+
1 − ω2

0

[
(1 + 2tan2 ω0t) + i

2K

ω0
tan ω0t

]
w+

1 = 0 for κ = 1 (14)

D2
t w

−
1 + ω2

0

[
(1 − 2coth2ω0t) + i

2K

ω0
coth ω0t

]
w−

1 = 0 for κ = −1, (15)
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Figure 3. The real part of the bosonic mode w+
2 (y; 1

2 , 1
2 ) for t ∈ [0, 20] and K = 0.01.

whereas the bosonic component fulfils

D2
t w

+
2 + ω2

0

[
1 − i

2K

ω0
tan ω0t

]
w+

2 = 0 for κ = 1 (16)

D2
t w

−
2 − ω2

0

[
1 − i

2K

ω0
coth ω0t

]
w−

2 = 0 for κ = −1. (17)

The solutions of the bosonic equations are expressed in terms of the Gauss hypergeometric
functions 2F1

w+
2 (t;α+, β+) = α+z

(p− 1
2 )

1 z
(q− 1

2 )

2 2F1
[
p + q, p + q − 1, 2p;− 1

2z1
]

−β+ e−2ipπ 4(p− 1
2 )z

−(p− 1
2 )

1 z
(q− 1

2 )

2 2F1
[
q − p, q − p + 1, 2 − 2p;− 1

2z1
]

(18)

and

w−
2 (t;α−, β−) = α−zr

3z
s
4 2F1

[
r + s, r + s + 1, 1 + 2r; 1

2z3
]

+ β−4rz−r
3 zs

4 2F1
[
s − r + 1, s − r, 1 − 2r; 1

2z3
]
, (19)

where the variables zi (i = 1, . . . , 4) are given in the following form:

z1 = i tan(ω0t) − 1, z2 = i tan(ω0t) + 1, z3 = coth(ω0t) + 1, z4 = coth(ω0t) − 1,

respectively. The parameters are the following:

p = 1

2

(
1 +

√
1 − 2K

ω0

)
, q = 1

2

(
1 +

√
1 +

2K

ω0

)
,

r = 1

2

√
1 + i

2K

ω0
, s = 1

2

√
1 − i

2K

ω0
.

The real and imaginary parts of the bosonic modes are displayed in figures 1–7. The
fermionic zero modes can be obtained as the inverse of the bosonic ones. Thus,

w+
1 = 1

w+
2 (t;α+, β+)

, w−
1 = 1

w−
2 (t;α−, β−)

. (20)

A comparison of w+
1 with the common 1/ cos t fermionic mode is displayed in figures 8

and 9.
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Figure 4. The imaginary part of the bosonic mode w+
2 (y; 1

2 , 1
2 ) for t ∈ [0, 20] and K = 0.01.
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Figure 5. The real part of the bosonic mode w+
2 (y; 1

2 , 1
2 ) for t ∈ [0, 20] and K = 2.

In the small K regime, K � ω0, one gets

w+
2 (t;α+, β+) ≈ α+z

(p− 1
2 )

1 z
(q− 1

2 )

2 2F1

[
2, 1, 2 − K

ω0
;−1

2
z1(t)

]

−β+ e−2ipπ 4(p− 1
2 )z

−(p− 1
2 )

1 z
(q− 1

2 )

2 2F1

[
K

ω0
, 1 +

K

ω0
,

K

ω0
;−1

2
z1(t)

]
(21)

and

w−
2 (t;α−, β−) ≈ α−zr

3z
s
4 2F1

[
1, 2, 2 + i

K

ω0
; 1

2
z3(t)

]

+ β−4rz−r
3 zs

4 2F1

[
1 − i

K

ω0
,−i

K

ω0
,−i

K

ω0
; 1

2
z3(t)

]
. (22)

Examining the bosonic equations, one can immediately see that the resonant frequencies
acquired resistive time-dependent losses whose relative strength is given by the parameter K.
The fermionic equations having time-dependent real parts of the frequency can be interpreted
as parametric oscillators which are also affected by losses through the imaginary part.



Classical harmonic oscillator with Dirac-like parameters and possible applications 11705

5 10 15 20

-0.4

-0.2

0.2

0.4

Figure 6. The real part of the bosonic mode w+
2 (y; 1

2 , 1
2 ) for t ∈ [0, 20] and K = 2 in the vertical

strip [−0.5, 0.5].
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Figure 7. The imaginary part of the bosonic mode w+
2 (y; 1

2 , 1
2 ) for t ∈ [0, 20] and K = 2.
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Figure 8. The fermionic zero mode −1/ cos t (red curve), and the real part of −1/w+
2 (blue curve),

for K = 0.01.
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Figure 9. The fermionic zero mode −1/ cos t (red curve), and the imaginary part of −1/w+
2 (blue

curve), for K = 2.

5. More K parameters

A more general case in this scheme is to consider the following matrix Dirac-like equation:[ (
0 −i
i 0

)
Dt +

(
0 1
1 0

) (
iup + K1 0

0 iup + K2

)] (
w1

w2

)
=

(
K ′

1 0
0 K ′

2

)(
w1

w2

)
. (23)

The system of coupled first-order differential equations will be now

[−iDt + iup + K2]w2 = K ′
1w1 (24)

[iDt + iup + K1]w1 = K ′
2w2 (25)

and the equivalent second-order differential equations

D2
t wi + [−i�K]Dtwi +

[±Dtup + i(K1 + K2)up + (K1K2 − K ′
1K

′
2) − u2

p

]
wi = 0, (26)

where the subindex i = 1, 2 and �K = K1 − K2. Under the gauge transformation

wi = Zi exp

(
−1

2

∫ t

[−i�K] dτ

)
= Zi(t) e

1
2 it�K, (27)

one gets

D2
t Zi + Qi(t)Zi = 0, (28)

where the ‘potentials’ have the form

Qi(t) = [±Dtup + i(K1 + K2)up + (K1K2 − K ′
1K

′
2) − u2

p

] − 1
4 [−i�K]2 (29)

Q1,2 are functions that differ from the nonoperatorial parts in equations (30)–(33) only by
constant terms. Indeed, one can obtain easily the following equations.

For the fermionic spinor component one gets

D2
t Z

+
1 − ω2

0

[
1 + 2tan2 ω0t − (K2 − K1)

2

4ω2
0

− K1K2 − K ′
1K

′
2

ω2
0

+ i
K1 + K2

ω0
tan ω0t

]
Z+

1 = 0

(30)
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for κ = 1, and

D2
t Z

−
1 + ω2

0

[
1 − 2coth2ω0t +

(K2 − K1)
2

4ω2
0

+
K1K2 − K ′

1K
′
2

ω2
0

+ i
K1 + K2

ω0
coth ω0t

]
Z−

1 = 0

(31)

for κ = −1.
The bosonic component fulfils

D2
t Z

+
2 + ω2

0

[
1 +

(K2 − K1)
2

4ω2
0

+
K1K2 − K ′

1K
′
2

ω2
0

− i
K1 + K2

ω0
tan ω0t

]
Z+

2 = 0, (32)

for κ = 1, and

D2
t Z

−
2 − ω2

0

[
1 − (K2 − K1)

2

4ω2
0

− K1K2 − K ′
1K

′
2

ω2
0

− i
K1 + K2

ω0
coth ω0t

]
Z−

2 = 0, (33)

for κ = −1. When K1 = K2 = K one gets the particular case studied in full detail above.
The more general ‘bosonic’ modes have the form

Z+
2 (t;α+, β+) = α+[tan(ω0t) − i]


1
4ω0 [tan(ω0t) + i]


2
4ω0

× 2F1

[

1 + 
2

4ω0
,

1 + 
2

4ω0
+ 1, 1 +


1

2ω0
; 1

2
(tan(ω0t) − i)

]

+ β+(−1)
− 
1

2ω0 [tan(ω0t) − i]−

1
4ω0 [tan(ω0t) + i]


2
4ω0

× 2F1

[

2 − 
1

4ω0
,

2 − 
1

4ω0
+ 1, 1 − 
1

2ω0
; 1

2
(tan(ω0t) − i)

]
(34)

and

Z−
2 (t;α−, β−) = α−[coth(ω0t) − 1]


3
4ω0 [coth(ω0t) + 1]


4
4ω0

× 2F1

[

3 + 
4

4ω0
+ 1,


3 + 
4

4ω0
, 1 +


3

2ω0
;−1

2
(coth(ω0t) − 1)

]

+ β−(−1)
− 
3

2ω0 4

3
2ω0 [coth(ω0t) − 1]−


3
4ω0 [coth(ω0t) + 1]


4
4ω0

× 2F1

[

3 − 
4

4ω0
,

4 − 
3

4ω0
+ 1, 1 − 
3

2ω0
;−1

2
(coth(ω0t) − 1)

]
, (35)

where


1 = (
4ω2

0 + (K1 + K2)
2 + 4[(K1 + K2)ω0 − K ′

1K
′
2]

)1/2
,


2 = (
4ω2

0 + (K1 + K2)
2 − 4[(K1 + K2)ω0 + K ′

1K
′
2]

)1/2
,


3 = (
4ω2

0 − (K1 + K2)
2 − 4[i(K1 + K2)ω0 − K ′

1K
′
2]

)1/2
,


4 = (
4ω2

0 − (K1 + K2)
2 + 4[i(K1 + K2)ω0 + K ′

1K
′
2]

)1/2
.

6. Applications

6.1. Waveguides

In view of the correspondence between mechanics and optics, one can also provide an
interpretation in terms of the Helmholtz optics for light propagation in waveguides of special
profiles. The supersymmetry of the Helmholtz equation has been studied by Wolf and
collaborators [7]. To get the waveguide application, one should switch from the temporal
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independent variable to a spatial variable t → x along which we consider the inhomogeneity
of the fibre whereas the propagation of beams is along another supplementary spatial coordinate
z. Thus, we turn equations (14)–(17) into Helmholtz waveguide equations of the type (we
take c = 1) [

∂2
z + ∂2

x + ω2
0n

2(x)
]
ϕ(x, z) = 0, (36)

where the modes ϕ(x, z) can be written in the form w1,2(x) e−ikzz for a fixed wavenumber kz

in the propagating coordinate that is common to both wavefunctions and the index profiles
correspond to two pairs of bosonic–fermionic waveguides and are given by

n2
b(x) ∼ 1 − i

2K

k0
tan(k0x), n2

f (x) ∼ −(1 + 2tan2(ω0x)) − i
2K

k0
tan(k0x), (37)

and

n2
b(x) ∼ −1 − i

2K

k0
coth(k0x), n2

f (x) ∼ 1 − 2coth2(k0x) + i
2K

k0
coth (k0x), (38)

respectively. In our units k0 = ω0. Equations (37), (38) can be obtained from Riccati equations
of the type (c 	= 1)

ω2
0n

2
f,b(x)/c2 = k2 ∓ Rx − R2, (39)

where R(x) are Riccati solutions directly related to the Riccati solutions discussed in the
previous sections.

According to Chumakov and Wolf [7] a second waveguide interpretation is possible
describing two different Gaussian beams, bosonic and fermionic, whose small difference in
frequency is given in terms of a small parameter ε (wavelength/beam width), propagating in
the same waveguide. In this interpretation, the index profile is the same for both beams. For
illustration, let us take the normal oscillator Riccati solution in the space variable x, i.e., tan k0x

that we approximate to first-order linear Taylor term k0x. Then, the two beam interpretation
leads to the following Riccati equation (for details, see the paper of Chumakov and Wolf)

ω2
1,2n

2(x) − ω2
0n

2(0) = ∓k0 − k2
0x

2(1 ∓ ε). (40)

An almost exact, up to nonlinear corrections of order ε2 and higher, supersymmetric pairing
of the z wavenumbers (propagating constants) occurs, except for the ‘ground state’ one. As
noted by Chumakov and Wolf, supersymmetry connects in this case light beams of different
frequencies but having the same wavelength in the propagation direction z. This approach is
valid only in the paraxial approximation. Therefore, one should know the small x behaviour
of the K-modes in order to hope to detect them through stable interference patterns along the
waveguide axis.

6.2. Cavity physics

Another very interesting application of the K-modes in a radial variable could be Schumann’s
resonances, i.e., the resonant frequencies of the spherical cavity provided by the Earth’s
surface and the ionosphere plasma layer [8]. The Schumann problem can be approached as a
spherical Helmholtz equation

[∇2
r + k2

]
φ = 0 with Robin-type (mixed) boundary condition

∂φ

∂n

∣∣
S

= C(ω)φS , where C(ω) is expressed in terms of the skin depth δ = √
2/(µcσω) of

the conducting wall, µc is its permeability and σ is its conductivity. The eigenfrequencies
fulfilling such boundary conditions can be written as follows:

ω2 ≈ ω2
0[(1 − I ) + iI ], (41)
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where I is a complicated expression in terms of skin depths and surface and volume integrals
of Helmholtz solutions with Neumann boundary conditions ∂φ

∂n

∣∣
S

= 0. It is worth noting
the similarity between these improved values of Schumann’s eigenfrequencies and the
K-eigenfrequencies. Moreover, using the Q parameter of the cavity, one can write
equation (41) in the form

ω2 ≈ ω2
0

[ (
1 − 1

Q

)
+ i

1

Q

]
. (42)

This form shows that the modification of the real part of ω leads to a downward shift of the
resonant frequencies, while the contribution to the imaginary component changes the rate of
decay of the modes.

We point out that Jackson mentions in his textbook that the near equality of the real and
imaginary parts of the change in ω2 is a consequence of the employed boundary condition,
which is appropriate for relatively good conductors. Thus, by changing the form of C(ω) that
could result from different surface impedances, the relative magnitude of the real and imaginary
parts of the change in ω2 can be made different. It is this latter case that corresponds better to
the K-modes.

6.3. Crystal models

There is also a strong mathematical similarity between the K-modes and the solutions of
Scarf’s crystal model [9] based on the singular potential V (x) = −V0 cosec2(πx/a), where
a is an arbitrary lattice parameter. For this model the one-dimensional Schrödinger equation
has the form

ψ ′′ + (a/π)2
[
λ2 +

(
1
4 − s2

)
cosec2(πx/a)

]
ψ = 0. (43)

For 0 < x � a/2, the general solution is

ψ = [f (x)]
1
2 +s

2F1
[

1
4 + 1

2 (s + λ), 1
4 + 1

2 (s − λ); 1 + s; f 2(x)
]

+ [f (x)]
1
2 −s

2F1
[

1
4 − 1

2 (s − λ), 1
4 − 1

2 (s + λ); 1 − s; f 2(x)
]
, (44)

where f (x) = sin(πx/a) corresponds to the zi(t) functions, and s and λ corresponding to
−p and −q, respectively, are related to the potential amplitude and energy spectral parameter.
Thus, by turning the K-oscillator equations into corresponding Schrödinger equations, one
could introduce another analytical crystal model with possible applications in photonics
crystals.

6.4. Cosmology

Two of the authors applied the K-mode approach to barotropic FRW cosmologies [10].
K-Hubble cosmological parameters have been introduced and expressed as logarithmic
derivatives of the K-modes with respect to the conformal time. For K → 0 the ordinary
solutions of the common FRW barotropic fluids have been obtained.

It is also worth noting the analogy of the nonzero K oscillator case with the phenomenon
of diffraction of atomic waves in imaginary crystals of light (crossed laser beams) [11]. In
fact, the K parameter is a counterpart of the modulation parameter Q introduced by Berry and
O’Dell in their study of imaginary optical gratings. Roughly speaking, the nonzero K modes
could occur in an imaginary crystal of time that could occur in some exotic astrophysical
conditions.
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7. Conclusion

By a procedure involving the factorization connection between the Dirac-like equations and the
simple second-order linear differential equations of harmonic oscillator type, a class of classical
modes with Dirac-like parameters describing their damping and absorption (dissipation) has
been introduced in this work. While for zero values of the Dirac parameters the highly singular
fermionic modes are decoupled from their normal bosonic harmonic modes, at nonzero values
a coupling between the two types of modes is introduced at the level of the matrix equation.
These interesting modes are given by the solutions of equations (30)–(33) and in a more general
way by equations (27), (34)–(35) of this work and are expressed in terms of hypergeometric
functions. Several possible applications in different fields of physics are mentioned as well.
Finally, similar to the fact that the PT quantum mechanics can be considered as a complex
extension of standard quantum mechanics, we note that what we have done here is a particular
type of complex extension of the classical harmonic oscillator.
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